A Low-Power Wide-Area Network (LPWAN) or Low-Power Wide-Area (LPWA) network or Low-Power Network (LPN) is a type of wireless telecommunication wide area network designed to allow long range communications at a low bit rate among things (connected objects), such as sensors operated on a battery. The low power, low bit rate and intended use distinguish this type of network from a wireless WAN that is designed to connect users or businesses, and carry more data, using more power.
A LPWAN may be used to create a private wireless sensor network, but may also be a service or infrastructure offered by a third party, allowing the owners of sensors to deploy them in the field without investing in gateway technology.
Video LPWAN
Platforms and technologies
There are a number of competing standards and vendors in the LPWAN space, the most prominent of which include:
LoRa based
LoRa is a proprietary, chirp spread spectrum (CSS) radio modulation technology for LPWAN used by LoRaWAN, Haystack Technologies, and Symphony Link.
LoRa is a patented (EP2763321 from 2013 and US7791415 from 2008) technology developed by Cycleo (Grenoble, France) and acquired by Semtech in 2012. LoRa uses license-free sub-gigahertz radio frequency bands like 169 MHz, 433 MHz, 868 MHz (Europe) and 915 MHz (North America).
On top of this physical layer, there are two main competing protocols:
LoRaWAN
LoRaWAN is a media access control layer protocol for managing communication between LPWAN gateways and end-node devices, maintained by the LoRa Alliance. Version 1.0 of the LoRaWAN specification was released in June 2015.
LoRaWAN defines the communication protocol and system architecture for the network while the LoRa physical layer enables the long-range communication link. LoRaWAN is also responsible managing the communication frequencies, data rate, and power for all devices. Devices in the network are asynchronous and transmit when they have data available to send. Data transmitted by an end-node device is received by multiple gateways, which forward the data packets to a centralized network server. The network server filters duplicate packets, performs security checks, and manages the network. Data is then forwarded to application servers. The technology shows high reliability for the moderate load, however it has some performance issues related to sending acknowledgements.
Platforms based on LoRaWAN include:
- GlobalSat, both a public LoRaWAN and private LoRa Nodes solution provider for WW, include Europe, US, Asia region and Japan market.
- ThingsConnected, a free platform provided by the UK Digital Catapult
- iFrogLab, public LoRaWAN and LoRa provider for North America and Taiwan.
- IoT-X, platform from Stream Technologies for public and private networks.
- OpenChirp, open management layer on top of LoRaWAN, developed at Carnegie Mellon University, for data context, storage, visualization, and access control. The primary objective is to simplify the experience of adding and operating new devices in the network, as well as improving performance for communities that share bandwidth and locality.
- The Things Network, a free and open-source LoRaWAN network provider developed and supported by a worldwide community.
- Everynet, provides a platform and gateways for Lora use in the Americas, Europe, China. [3]
- ThingPark Wireless, platform from Actility based on LoRaWAN.
- Senet, public LoRaWAN provider in North America.
- LORIOT.io, global public LoRaWAN operator and platform for private and public networks.
- ResIOT.io, platform for private, public networks and IoT projects.
- The LPWAN ecosystem comprises analytics vendors, such as Semtech Corporation (California), LORIOT (Switzerland), NWave Technologies (London), SIGFOX (France), WAVIoT (Texas), Actility (France), Ingenu (San Diego), Link Labs (Maryland), Weightless SIG, and Senet, Inc. (Portsmouth), ResIOT (Italy) and various others such as service providers and enterprises. Other stakeholders of the Low Power Wide Area Network market include telecom operators such as Vodafone (U.K.) and Orange (France), among others who integrate these smart devices and sell them to end users to cater to their unique business requirements.
Ultra Narrow Band
UNB, Ultra Narrow Band, modulation technology used for LPWAN by various companies including:
- Sigfox, UNB-based technology and French company.
- Telensa
- NB-IoT, another narrow band standard initiated and completed by 3gpp with their release 13 of the series of IoT standardizations.
- Nwave, proprietary technology developed in cooperation with MIT. Its first release without error correcting codes also forms the basis of the Weightless-N open protocol
- Weightless, a set of communication standards from the Weightless SIG.
Others
- DASH7 Mode 2 development framework for low power wireless networks, by Haystack Technologies. Runs over many wireless radio standards like LoRa, LTE, 802.15.4g, and others.
- LTE Advanced for Machine Type Communications (LTE-MTC), an evolution of LTE communications for connected things by 3GPP.
- MySensors, DIY Home Automation framework supporting different radios including LoRa.
- NarrowBand IoT (NB-IOT), standardization effort by 3GPP for a LPWAN used in cellular networks, that evolved from Huawei's NB-CIoT effort.
- Random phase multiple access (RPMA), technology from Ingenu, formerly known as On-Ramp Wireless.
Maps LPWAN
See also
- QRP operation
- Slowfeld
- ZigBee
References
Further reading
- Lee, Chang-Jae, Ki-Seon Ryu, and Beum-Joon Kim. "Periodic ranging in a wireless access system for mobile station in sleep mode." U.S. Patent No. 7,194,288. 20 March 2007.
- Quigley, Thomas J., and Ted Rabenko. "Latency reduction in a communications system." U.S. Patent No. 7,930,000. 19 April 2011.
- Bankov, D.; Khorov, E.; Lyakhov, A. "On the Limits of LoRaWAN Channel Access". 2016 International Conference on Engineering and Telecommunication (EnT): 10-14.
Source of the article : Wikipedia